skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Matsuzaki, Shin‐ichiro S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Research aimed at identifying indicators of persistent abrupt shifts in ecological communities, a.k.a regime shifts, has led to the development of a suite of early warning signals (EWSs). As these often perform inaccurately when applied to real-world observational data, it remains unclear whether critical transitions are the dominant mechanism of regime shifts and, if so, which EWS methods can predict them. Here, using multi-trophic planktonic data on multiple lakes from around the world, we classify both lake dynamics and the reliability of classic and second generation EWSs methods to predict whole-ecosystem change. We find few instances of critical transitions, with different trophic levels often expressing different forms of abrupt change. The ability to predict this change is highly processing dependant, with most indicators not performing better than chance, multivariate EWSs being weakly superior to univariate, and a recent machine learning model performing poorly. Our results suggest that predictive ecology should start to move away from the concept of critical transitions, developing methods suitable for predicting resilience loss not limited to the strict bounds of bifurcation theory. 
    more » « less
  2. Abstract Managing ecosystems to effectively preserve function and services requires reliable tools that can infer changes in the stability and dynamics of a system. Conceptually, functional diversity (FD) appears as a sensitive and viable monitoring metric stemming from suggestions that FD is a universally important measure of biodiversity and has a mechanistic influence on ecological processes. It is however unclear whether changes in FD consistently occur prior to state responses or vice versa, with no current work on the temporal relationship between FD and state to support a transition towards trait‐based indicators. There is consequently a knowledge gap regarding when functioning changes relative to biodiversity change and where FD change falls in that sequence. We therefore examine the lagged relationship between planktonic FD and abundance‐based metrics of system state (e.g. biomass) across five highly monitored lake communities using both correlation and cutting edge non‐linear empirical dynamic modelling approaches. Overall, phytoplankton and zooplankton FD display synchrony with lake state but each lake is idiosyncratic in the strength of relationship. It is therefore unlikely that changes in plankton FD are identifiable before changes in more easily collected abundance metrics. These results highlight the power of empirical dynamic modelling in disentangling time lagged relationships in complex multivariate ecosystems, but suggest that FD cannot be generically viable as an early indicator. Individual lakes therefore require consideration of their specific context and any interpretation of FD across systems requires caution. However, FD still retains value as an alternative state measure or a trait representation of biodiversity when considered at the system level. 
    more » « less
  3. Abstract Temperature and biodiversity changes occur in concert, but their joint effects on ecological stability of natural food webs are unknown. Here, we assess these relationships in 19 planktonic food webs. We estimate stability as structural stability (using the volume contraction rate) and temporal stability (using the temporal variation of species abundances). Warmer temperatures were associated with lower structural and temporal stability, while biodiversity had no consistent effects on either stability property. While species richness was associated with lower structural stability and higher temporal stability, Simpson diversity was associated with higher temporal stability. The responses of structural stability were linked to disproportionate contributions from two trophic groups (predators and consumers), while the responses of temporal stability were linked both to synchrony of all species within the food web and distinctive contributions from three trophic groups (predators, consumers, and producers). Our results suggest that, in natural ecosystems, warmer temperatures can erode ecosystem stability, while biodiversity changes may not have consistent effects. 
    more » « less
  4. Abstract For over a century, ecologists have used the concept of trophic state (TS) to characterize an aquatic ecosystem's biological productivity. However, multiple TS classification schemes, each relying on a variety of measurable parameters as proxies for productivity, have emerged to meet use‐specific needs. Frequently, chlorophyll a, phosphorus, and Secchi depth are used to classify TS based on autotrophic production, whereas phosphorus, dissolved organic carbon, and true color are used to classify TS based on both autotrophic and heterotrophic production. Both classification approaches aim to characterize an ecosystem's function broadly, but with varying degrees of autotrophic and heterotrophic processes considered in those characterizations. Moreover, differing classification schemes can create inconsistent interpretations of ecosystem integrity. For example, the US Clean Water Act focuses exclusively on algal threats to water quality, framed in terms of eutrophication in response to nutrient loading. This usage lacks information about non‐algal threats to water quality, such as dystrophication in response to dissolved organic carbon loading. Consequently, the TS classification schemes used to identify eutrophication and dystrophication may refer to ecosystems similarly (e.g., oligotrophic and eutrophic), yet these categories are derived from different proxies. These inconsistencies in TS classification schemes may be compounded when interdisciplinary projects employ varied TS frameworks. Even with these shortcomings, TS can still be used to distill information on complex aquatic ecosystem function into a set of generalizable expectations. The usefulness of distilling complex information into a TS index is substantial such that usage inconsistencies should be explicitly addressed and resolved. To emphasize the consequences of diverging TS classification schemes, we present three case studies for which an improved understanding of the TS concept advances freshwater research, management efforts, and interdisciplinary collaboration. To increase clarity in TS, the aquatic sciences could benefit from including information about the proxy variables, ecosystem type, as well as the spatiotemporal domains used to classify TS. As the field of aquatic sciences expands and climatic irregularity increases, we highlight the importance of re‐evaluating fundamental concepts, such as TS, to ensure their compatibility with evolving science. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  5. Abstract Untangling causal links and feedbacks among biodiversity, ecosystem functioning, and environmental factors is challenging due to their complex and context-dependent interactions (e.g., a nutrient-dependent relationship between diversity and biomass). Consequently, studies that only consider separable, unidirectional effects can produce divergent conclusions and equivocal ecological implications. To address this complexity, we use empirical dynamic modeling to assemble causal networks for 19 natural aquatic ecosystems (N24 ◦ ~N58 ◦ ) and quantified strengths of feedbacks among phytoplankton diversity, phytoplankton biomass, and environmental factors. Through a cross-system comparison, we identify macroecological patterns; in more diverse, oligotrophic ecosystems, biodiversity effects are more important than environmental effects (nutrients and temperature) as drivers of biomass. Furthermore, feedback strengths vary with productivity. In warm, productive systems, strong nitrate-mediated feedbacks usually prevail, whereas there are strong, phosphate-mediated feedbacks in cold, less productive systems. Our findings, based on recovered feedbacks, highlight the importance of a network view in future ecosystem management. 
    more » « less
  6. Coulson, Tim (Ed.)
  7. Abstract In recent decades, lakes have experienced unprecedented ice loss with widespread ramifications for winter ecological processes. The rapid loss of ice, resurgence of winter biology, and proliferation of remote sensing technologies, presents a unique opportunity to integrate disciplines to further understand the broad spatial and temporal patterns in ice loss and its consequences. Here, we summarize ice phenology records for 78 lakes in 12 countries across North America, Europe, and Asia to permit the inclusion and harmonization of in situ ice phenology observations in future interdisciplinary studies. These ice records represent some of the longest climate observations directly collected by people. We highlight the importance of applying the same definition of ice-on and ice-off within a lake across the time-series, regardless of how the ice is observed, to broaden our understanding of ice loss across vast spatial and temporal scales. 
    more » « less